Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas

نویسندگان

  • Cord Dohrmann
  • Peter Gruss
  • Lydia Lemaire
چکیده

Despite the pivotal role of the pancreas in hormonally-regulated pathways in the body, e.g. glucose homeostasis, the genetic mechanisms defining it have for many years remained largely enigmatic. After years out of the spotlight, pancreas development has once again come to centre stage. To a large extent, this is due to recent advances made through the detailed analysis of transgenic mice which have been engineered to carry mutations in specific developmental control genes. This review specifically focuses on the specification of the endocrine pancreas lineage and in particular on the role of the developmental control genes Pax4 and Pax6 in the generation of specific endocrine cell types. The comparison of various phenotypes of different mouse mutants affecting endocrine development supports a model in which Pax4 and Pax6 are required for the differentiation of certain endocrine cell lineages and implies a potential for acting at different levels of endocrine development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells

The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...

متن کامل

In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells.

Although organ-specific stem cells possess plasticity that permit differentiation along new lineages, production of endocrine pancreas and insulin-secreting beta cells from adult nonpancreatic stem cells has not been demonstrated. We present evidence that highly purified adult rat hepatic oval "stem" cells, which are capable of differentiation to hepatocytes and bile duct epithelium, can trans-...

متن کامل

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

تمایز بن‌یاخته‌های‌ جنینی‌ انسان‌ به‌ سلولهای‌ مولد انسولین‌

Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...

متن کامل

Pax 4 and 6 regulate gastrointestinal endocrine cell development

The mechanisms behind the cell-specific and compartmentalized expression of gut and pancreatic hormones is largely unknown. We hereby report that deletion of the Pax 4 gene virtually eliminates duodenal and jejunal hormone-secreting cells, as well as serotonin and somatostatin cells of the distal stomach, while deletion of the Pax 6 gene eliminates duodenal GIP cells as well as gastrin and soma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2000